US ERA ARCHIVE DOCUMENT

# Exposure Monitoring Component for Detroit Children's Health Study (DCHS)

Shaibal Mukerjee, Ph.D. Research Physical Scientist U.S. EPA, ORD, NERL-RTP

Health Canada-U.S. EPA (Windsor/Detroit Studies)
Workshop

October 21, 2005

# **Background**

- Conventional, regulatory-based air monitoring
  - Expensive
  - Few locations
- Passive diffusion sampling
  - Cheaper to deploy & portable
  - Appropriate for personal exposure & urban network monitoring
- Spatial analysis studies with passives
  - Europe & Canada
  - EPA El Paso Children's Health Study
- Land-use regression modeling (Jerrett et al., 2005)
  - Passive ambient measurements with GIS data



# Spatial Analysis Approach



Adapted from Neas, Detroit Children's Health Study Presentation, 09/13/04



## Individual Exposure Estimates



Neas et al. Epidemiology 2004; 15:S66.



# **Exposure Methods**

- Ambient monitoring
  - 25 local elementary schools in Detroit & Dearborn Public School systems
  - 2 MDEQ sites for field methods evaluation
- Passive Sampling Technology for VOCs & NO<sub>2</sub> same as DEARS.
  - Carbopack X tubes VOCs
  - Ogawa badges NO<sub>2</sub>



- Sampling for 6 weeks in Summer '05 (stable air masses, low winds) & concurrent with DEARS
- Week-long sampling integrals to mimic chronic exposures



# Passive Monitor Locations at Schools







Monitors installed under protective shelters outside of schools (stainless steel for Carbopack X tubes & Ogawas, Plastic/PVC for PM samplers). All sites checked for immediate VOC influence.



### Choice of Predictor Variables

- Sources
  - SEMCOG modeled traffic counts (2000)
  - NCES
  - U.S. Census (2000)
  - TRI (2000 & 2002)
  - NEI Criteria Pollutant database (1999)
- Variable types (relative to the schools) from GIS
  - Traffic intensity (vehicles per day/km) within set distances
  - Distance (m) to nearest road of various traffic volumes
  - Housing unit density (units/km² in census block)
  - Population density (people/km² in census block)
  - Distance (m) to point sources
  - Distance (m) to nearest border X-ing
- Correlation analysis
  - Same correlation structure desired monitored & un-monitored schools
  - Wanted to avoid strong correlation among chosen predictor variables



### Schools Chosen for Monitoring from Pattern Analysis of Predictor Variables





#### Future Research

- Development of land-use regression model for Detroit & Dearborn for VOCs & NO<sub>2</sub>.
- Field methods evaluation of passives at MDEQ sites.
- Possible passive PM monitoring effort in Summer 2006.
- Possible joint-border land-use regression model

   need same spatial variables as used in DCHS with the ambient data.



## Acknowledgements

- Detroit and Dearborn Public Schools
  - Felicia Venable, Director, Environmental Health & Safety, Detroit Public Schools (DPS)
  - Mathew Sam & Priscilla Morris, DPS
  - Don Ball, Safety, Security and Regulatory Compliance, Dearborn Public Schools
  - School Principals, Engineers, Staff & Students
- MDEQ
  - Ann Chevalier, Dr. Mary Ann Heindorf, Craig Fitzner & Field Staff
- EPA
  - Dr. Lucas Neas, Ron Williams, Dr. Ann Williams
- Alion Science & Technology
  - Drs. Hunter Daughtrey, Luther Smith, Casson Stallings & Field Staff

Disclaimer-Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.

